Q1: Determine which of the following statements are FALSE.

If
$$f$$
 and g are continuous on $[a,b]$, then
$$\int_a^b [f(x)g(x)]dx = \left(\int_a^b f(x)dx\right)\left(\int_a^b g(x)dx\right)$$

If
$$f$$
 has an absolute minimum value at c , then $f'(c)=0$.

III. If
$$f'(x) < 0$$
 for $1 < x < 6$, then f is decreasing on $(1,6)$.

If
$$f$$
 is continuous on $[a,b]$, then $\frac{d}{dx} \left(\int_a^b f(x) dx \right) = f(x)$

I. let
$$f(x), g(x) = x$$
 on $[0,1]$.

$$\int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3} \neq$$

$$\left(\int_0^1 x \, dx\right)^2 = \left(\frac{x^2}{2}\Big|_0^1\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

$$\frac{d}{dx} \int_0^1 x dx = \frac{d}{dx} \left(\frac{x^2}{2} \right)^1 = \frac{d}{dx} \left(\frac{1}{2} - 0 \right) = 0 \neq f(x)$$

Q2: Only one of the following statements is always true for any case. Determine which one is true. (Assume that f(x) and g(x) are continuous.)

(A.)
$$\int_{1}^{2} f(x^{3}) dx = \int_{1}^{8} \frac{f(u)}{3u^{2/3}} du$$

B.
$$\int_0^1 [f(x) + g(x)] dx = -\int_1^0 f(x) dx + \int_0^1 g(x) dx = 0$$

C. If
$$\int_a^b f(x)dx \ge 0$$
, then $f(x) \ge 0$ on $[a,b]$.

D.
$$\int_{-3}^{-2} f(x) dx = -\int_{2}^{3} f(x) dx$$

E. If
$$f$$
 is continuous on $[a,b]$, then $\int_a^b xf(x)dx = x\int_a^b f(x)dx$.

A. let
$$u=x^3$$
 $\Rightarrow du=3x^2dx$
 $x=u^{1/3}$ $\Rightarrow dx=\frac{1}{3x^2}du=\frac{1}{3u^{1/3}}du$

 $u(1)=1$, $u(2)=2^3=8$

$$\int_{1}^{2} f(x^{3}) dx = \int_{1}^{8} \frac{f(u)}{3u^{2}(3)} du$$

Q3: If f is a differentiable function on an open interval (a,b) and X is a real number in (a,b), which of the following statements is **NOT** always true?

A.
$$\int_{a}^{x} f'(t)dt = f(x) - f(a)$$

B.
$$\frac{d}{dx} \left(\int_a^b f(t) dt \right) = 0$$
 See Q1 V

C.
$$\int_{a}^{x} f(t)dt = f'(x) - f'(a)$$
 See below

$$\int f'(x)dx = f(x) + C$$

E. If
$$F'(x) = f(x)$$
, then $\int_a^x f(t)dt = F(x) - F(a)$

F.
$$\frac{d}{dx}\left(\int_a^x f(t)dt\right) = f(x)$$

C. let
$$f(t) = t^2$$
 on $(0, \infty)$.

$$\int_{0}^{2} t^{2} dt = \frac{t^{3}}{3} \Big|_{0}^{2} = \frac{2}{3}^{3} \neq$$

$$f'(x) - f'(0) = 2x$$

Q1: Let
$$y = \sqrt{x + f(x^2 - 1)}$$
. Given that $f(8) = 0$ and $f'(8) = 3$, find $\frac{dy}{dx}$ when $x = 3$.

$$\frac{dy}{dx} = \frac{1}{2} \left(x + f(x^2 - 1) \right)^{-\frac{1}{2}} \left(1 + f'(x^2 - 1) \cdot 2x \right)$$

$$\frac{dy}{dx} \Big|_{x=3} = \frac{1}{2} \left(3 + f(8) \right)^{-\frac{1}{2}} \left(1 + f'(8) \cdot 2(3) \right)$$

$$= \frac{19}{2\sqrt{3}}$$

Q3: Given that $f''(u) = \frac{2u^2 - 4\sqrt{u}}{u}$ with the initial conditions f'(0) = 2 and f(0) = -1, find f(u).

$$f''(u) = 2u - 4u^{-\frac{1}{2}}$$

$$f'(u) = \int f''(u) du = 2 \cdot \frac{u^2}{2} - 4 \cdot \frac{u^{1/2}}{1/2} + C_1$$

$$= u^2 - 8u^{1/2} + C_1$$

$$f'(0) = 2 \implies 0^2 - 8(0)^{1/2} + C_1 = 2 \implies C_1 = 2$$

: $f'(u) = u^2 - 8u^{1/2} + 2$

$$f(u) = \int f'(u) du = \int u^2 - 8u^{1/2} + 2 du$$

$$= \frac{u^3}{3} - 8 \frac{u^{3/2}}{3/2} + 2u + C_2$$

$$= \frac{u^3}{3} - \frac{16}{3} u^{3/2} + 2u + C_2$$

$$f(0) = -1$$
 => 0 - 0 + 0 + $C_2 = -1$ => $C_2 = -1$
:. $f(u) = u^3/3 - \frac{16}{3}u^{3/2} + 2u - 1$

Q5: Suppose that f and h are continuous functions and that $\int_{1}^{9} f(x)dx = -1$, $\int_{1}^{9} f(x)dx = 5$, and $\int_{7}^{9} 2h(x)dx = 4$. Find $\int_{7}^{9} \left[-f(x) + 3h(x) \right] dx$.

$$O S_q^q f(x) dx$$

$$\int_{1}^{9} f(x) dx = \int_{1}^{9} f(x) dx + \int_{1}^{9} f(x) dx$$

$$\Rightarrow 5 = -1 + \int_{7}^{9} f(x) dx$$

=>
$$\int_{1}^{9} f(x) dx = 6$$

$$\int_{7}^{9} zh(x)dx = 4 \Rightarrow \int_{7}^{9} h(x)dx = 2$$

$$\begin{aligned}
3 & \left(\frac{9}{7}\left[-f(x) + 3h(x)\right]dx = \left(\frac{9}{7} - f(x)\right)dx + \left(\frac{9}{7} 3h(x)\right)dx \\
&= -\left(\frac{9}{7} f(x)\right)dx + 3\left(\frac{9}{7} h(x)\right)dx \\
&= -6 + 3(2)
\end{aligned}$$